ISSN 1998-0663 (print), English version: ISSN 2587-814X (print), |
Зиненко А. В.1Прогнозирование финансовых временных рядов с использованием сингулярного спектрального анализа
2023.
№ 3 Vol 17.
С. 87–100
[содержание номера]
Финансовые временные ряды представляют собой объемные массивы информации по котировкам и объемам торгов акций, валют и других биржевых и внебиржевых инструментов. Анализ и прогнозирование таких рядов всегда представляли особый интерес как для исследователей-аналитиков, так и для инвесторов-практиков. Однако, финансовые временные ряды имеют свою специфику, не позволяющую найти единственно верный и работающий метод прогнозирования. В настоящее время алгоритмы машинного обучения позволяют анализировать большие объемы данных и производить тестирование полученных моделей. Современные технологии позволяют тестировать и применять сложные методы прогнозирования, требующие объемных вычислений. Они дают возможность развивать математическую базу прогнозирования, комбинировать различные подходы в одном методе. Примером такого современного подхода является метод сингулярного спектрального анализа (SSA), который сочетает в себе разложение временного ряда в сумму временных рядов, метод главных компонент и рекуррентное прогнозирование. Целью настоящей работы является анализ возможности применения SSA метода к финансовым временным рядам. Метод SSA был рассмотрен в сравнении с другими распространенными методами прогнозирования финансовых временных рядов: ARIMA, разложение Фурье и рекуррентная нейронная сеть. Для реализации методов был разработан программный алгоритм на языке Python. Также была осуществлена апробация метода на временных рядах котировок российских и американских акций, валют и криптовалют.
Библиографическое описание:
Зиненко А.В. Прогнозирование финансовых временных рядов с использованием сингулярного спектрального анализа // Бизнес-информатика. 2023. Т. 17. № 3. С. 87–100. DOI: 10.17323/2587-814X.2023.3.87.100
|
|